Orion Exploration Mission 1: Proposed Radiation Measurements in Cislunar Space

Razvan Gaza, David Murrow, Hesham Hussein, Christine Braden, Torin T. Meyers, Tad D. Shelfer
razvan.gaza@lmco.com

© 2016 Lockheed Martin Corporation. All Rights Reserved.
Orion MPCV

- Orion is an Exploration Class spacecraft
 - Designed for Exo-LEO (not geomagnetically shielded) radiation environment

- European Service Module for EM-1 and EM-2
 - Collaboration with Airbus/ESA

- Crew Ionizing Radiation Protection
 - First standalone spacecraft to incorporate crew radiation protection in the early design
 - Consistent with ALARA (As Low As Reasonably Achievable) principles
 - Radiation analysis is performed on the full detail, manufacturing quality CAD model of the spacecraft
 - Iterative process, performed by the contractor integral to the design engineering effort
 - Orion radiation protection solution evolved with the vehicle design trade space
 - Lift-off mass is an important design driver
 - Successful crew radiation protection strategy was enabled by familiarity with vehicle design and optimization of radiation analysis procedure
 - Current baseline improves the crew protection (i.e., reduces exposure) by a factor of ~3x, down to E ~ 100 mSv / Design reference SPE (King Aug ‘72)
SPE Response Scenario

<table>
<thead>
<tr>
<th></th>
<th>2006</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safe haven</td>
<td>Safe haven partially in the bays</td>
<td>Safe haven completely in the bays</td>
</tr>
<tr>
<td></td>
<td>Cabin reconfigured to optimize shielding</td>
<td>Cabin reconfigured to optimize shielding</td>
</tr>
<tr>
<td>Radiation</td>
<td>216 kg of dedicated radiation shield</td>
<td>0 kg of dedicated radiation shielding</td>
</tr>
</tbody>
</table>
Nominal Cabin Configuration
Cabin Reconfigured for SPE
Radiation Shelter Evaluation

- NASA JSC Building 9
- Orion medium-fidelity mockup
- July-Aug 2016
Exploration Architectures

• Additional Exploration capabilities beyond Orion and SLS

• NASA NextSTEP program: development of deep space habitation
 – NASA anticipates first flight opportunities in Early to Mid 2020s
 – Lockheed Martin has participated in Phase 1 and has been selected for Phase 2
 • Goal of phase 2 is delivery of ground prototype units to NASA

• Expanded vision for crew radiation protection
 – Leverage Orion lessons learned
 • Early design for radiation protection
 • Shielding augmentation by repurposed mass
 • Radiation analysis as enabler of ALARA
 – New strategies
 • Emphasis on mobility and portability between elements
 • Individual SPE radiation shield (vest)
AstroRad Radiation Vest

• **International Collaboration** Lockheed Martin & StemRad
 – Leverages StemRad manufacturing expertise
 – Analysis shows ~2x increase in protection
 • SPE, Orion-representative shielding, vest mass = 26 kg
 – Ergonomic evaluation in the Orion & ISS mock-ups
• Electronic components are susceptible to ionizing radiation too!

• Orion RHA effort is of unprecedented complexity
 – Modern EEE parts in a complex software configurable Avionics system
 – 120 V power system
 – Exo-LEO environments
 – Safety requirements
 – Dynamic mission phases
 – International collaboration (ESA/Airbus)

• First ever NASA spacecraft to implement an Ionizing Radiation Control Plan (IRCP)
 – Contractual document that imposes a uniform set of ionizing radiation requirements across components / providers
 – EEE Parts radiation testing: LET, sample size, particle range, similarity, derating
 – SEE circuit analysis in Radiation Assessment Matrix (RAM)
 • TID is secondary concern

• System integration of radiation effects
Exploration Flight Test 1

- Two-orbit flight successfully completed Dec 5, 2014
- High altitude, high eccentricity orbit to max altitude 3,600 mi
- Van Allen proton belts environment was modeled with AP-8
 - Intravehicular peak flux comparable to the design reference Oct ‘89 SPE
- **Dynamic environment**
 - Second stage jettison “SM separation” occurred close to peak flux environment
Radiation Area Monitors

- Passive Dosimeters (OSLDs)
 - Incorporated in the vehicle as an Opportunity (no associated requirements)
 - Provided & processed by NASA SRAG
 - Pre-flight intravehicular environment predictions by Lockheed Martin agree w/ measurements within factors 0.96-1.4x

![Graph showing radiation dose comparison between predicted and measured data for various RAM locations.]

RAM locations

- RAM1: CIAS pallet
- RAM2: aft bulkhead, ctrl stowage bay
- RAM3: aft bulkhead, WMS
- RAM4: fwd bulkhead inside tunnel
- RAM5: conical section, thick shielding
- RAM6: conical section, thin shielding
Exploration Design Challenge

• Education outreach initiative of NASA, LM, and NIA
 – Space radiation shielding design by high school team was flown on EFT-1
 – OSLDs for EDC were provided courtesy of Oklahoma State University
 • Credit: Brandon Doull, Eduardo Yukihara
EFT-1 Flight Test Camera

Predicted proton flux (AP-8, E > 50 MeV)

mission elapsed time (hh:mm)
EFT-1 Flight Test Camera

Predicted proton flux (AP-8, E > 50 MeV)

mission elapsed time (hh:mm)
EFT-1 Flight Test Camera

Predicted proton flux (AP-8, E > 50 MeV)

mission elapsed time (hh:mm)
Exploration Mission 1

Total Mission Duration: 25-26 days

Return (DRI to EI): 8-11 days

Outbound (TLI to DRI): 8-11 days

1) Launch

2) Perigee Raise Maneuver (PRM)
 ICPS - 100x975 nmi
 (185x1806 km)

3) Trans-Lunar Injection (TLI)
 ICPS

4) OTC-1/possible OMS-E Check Out (OCO) burn
 Orion OMS-E/Aux

5,7) Outbound Trajectory Correction (OTC) burns 2 thru 6
 Orion Aux

6) Outbound Powered Flyby (OPF) burn
 Orion OMS-E/Aux

10) Distant Retrograde orbit Departure (DRD) burn
 Orion OMS-E

11,13) Return Trajectory Correction (RTC) burns 1 thru 6
 Orion Aux

9) Orbit Maintenance (OM) burns
 Orion Aux

8) Distant Retrograde orbit Insertion (DRI) burn
 Orion OMS-E

12) Return Powered Flyby (RPF) burn
 Orion OMS-E

14) CM/SM Sep
 EI-20 min

15) Entry & Landing

Outbound (TLI to DRI): 8-11 days

Distant Retrograde Orbit (DRO): 6 days
37,797 nmi
(70,000 km)

Total Mission Duration: 25-26 days
EM-1 Radiation Measurements

- Radiation phantoms to offset ballast and add science value
 - Two RANDO phantoms provided by DLR and ISA
 - ISA phantom fitted with the AstroRad vest
 - Opportunity for international dosimetry intercomparison

EM-1 provides a unique opportunity for exo-LEO anthropomorphic phantom dosimetry inside a human rated spacecraft
Ground Rules

• **Vehicle Integration**
 – Phantom location will be driven by vehicle constraints (Mass Properties)
 – No impacts to the vehicle
 • Payload restraint engineering
 • No power or data assumed available from the vehicle
 – Rely on payload provider for Flight Certification
 • Focus on Safety / Hazard Review (e.g., loads, vibration, outgassing, thermal)
 • Inputs required for vehicle level analyses
 – Internal cabin environment:
 • Pressure: 14 to 18 psia nominal (0 psia contingency)
 • Temperature: -7 ºC to +45 ºC (19 ºF to 117 ºF) (bounding extreme range)

• **Science component**
 – Passive dosimetry with large international involvement
 – Active dosimetry highly desired subject to integration constraints
 • Self contained power/memory/switch-on, additional flight certification (thermal, batteries)
 • Separate environment contributions (van Allen / Solar protons vs. GCR)
 • Local measurements to assess AstroRad shielding effectiveness
 – CAD shielding analysis & environmental predictions
 – Science data are to be published in major peer-reviewed journal(s)
Conclusion

Your help is requested:
• Support/participate in the EM-1 radiation phantom dosimetry intercomparison
• Identify/ provide active dosimetry for the EM-1 radiation phantom measurement
• Suggest other science experiments on EM-1 (radiation- or non-radiation)

Ultimate goal is improving astronaut safety and enabling Exploration