3D Dose Distribution Measurements by Passive Detectors in the Columbus Module

Andrea Stradi, stradi.andrea@energia.mta.hu, MTA EK, Budapest, Hungary
Jozsef K. Palfalvi, palfalvi@aeki.kfki.hu, MTA EK, Budapest, Hungary
Julianna Szabo, szabo.julianna@energia.mta.hu, MTA EK, Budapest, Hungary
Günther Reitz, guenther.reitz@dlr.de, DLR, Cologne, Germany
Thomas Berger, thomas.berger@dlr.de, DLR, Cologne, Germany
Bartos Przybyla, bartos.przybyla@dlr.de, DLR, Cologne, Germany
René Demets, rene.demets@esa.int, ESA, Netherlands

20th WRMISS 8–10 September 2015, Cologne, Germany
Introduction – DOSIS-3D

- Follow up experiment of the Dosis Project (2009-2011)
- Goal: obtaining 3 dimensional dose distribution information at different locations and shielding conditions
 - Active parts: DOSTEL-1 and DOSTEL-2 dosimetry telescopes
 - Combined passive detector packages at 11 locations
 (TLDs: low LET radiation, SSNTDs: high LET radiation >10 keV/µm)
- 6 completed phases since 2012
Introduction – Space Weather

• Systematic decrease of neutron count rate → decreasing number of high LET GCR particles

• Increased solar activity between 2014 and 2015
Detector Packages

MTA EK stack 1
- 6 pcs of TLDs (3 x 6LiF, 3 x 7LiF)
- 2 layer of SSNTDs

MTA EK stack 2
- 8 pcs of TLDs (4 x 6LiF, 4 x 7LiF)

Passive Detector Package 1
at 10 locations + x, y, z

Passive Detector Package 2
at 10 locations + x
Detector Packages - Locations

Detectors arranged in 3D

Star CONE (X direction)

← Forward
Method

• **SSNTD**: etching in 2 steps in 6 N NaOH solution at 70 °C
 (TASTRAK material, produced by TASL, Bristol, U.K.)
 - pre-exposure irradiation (210Po) → etched off layer
 - **6 h etching**: high LET particle tracks become visible
 (circular and elliptical tracks measured automatically + HZE tracks measured manually)
 - **15 h etching**: low LET particle tracks become visible
 (only circular and elliptical tracks measured automatically)
 → final LET spectra obtained from the combined 6h & HZE & 15h results

• **TLD**:
 (MTS-N, MTS-6, MTS-7)
 - pre-exposure annealing at 400 °C (1 h) and 100 °C (2 h)
 - readout by a Harshaw 2000 instrument
 (evaluation based on the dosimetric (5th) peak)
 - post-exposure annealing at 400 °C (1 h) and 100 °C (2 h)
 - detectors individually calibrated using a 137Cs source
Results – Track Detectors (D)

- The Y and Z orientations were not constant

<table>
<thead>
<tr>
<th></th>
<th>3D/1</th>
<th>3D/2</th>
<th>3D/3</th>
<th>3D/4</th>
<th>3D/5</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Z</td>
<td>Y</td>
<td>Y</td>
<td>Z</td>
<td>Z</td>
</tr>
<tr>
<td>Y</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PDP 1 Package (D)

Absorbed Dose Rate (μGy/d)

- X cone varied

Graph showing absorbed dose rate for different boxes and orientations.
Results – Track Detectors (H)

• The Y and Z orientations were not constant

PDP 1 Package (H)
Results – Track Detectors (D)

- $D_{fwd} < D_{aft}$ tendency in most phases

PDP 1 Package (D)

Boxes listed according to increasing D
Results - LET spectra

3D/1: highest overall dose rate
- box-2: highest dose rate
- box-3: lowest dose rate

3D/3: lowest overall dose rate
- box-2: highest dose rate
- box-3: lowest dose rate

Very few particles over 200 keV/µm

- Space weather conditions were the same in average
- ~ 5 km higher altitude during 3D/3
- Differences in shielding?
Results – Thermoluminescent Detectors

- The Y and Z orientations were not constant

<table>
<thead>
<tr>
<th></th>
<th>3D/1</th>
<th>3D/2</th>
<th>3D/3</th>
<th>3D/4</th>
<th>3D/5</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Z</td>
<td>x</td>
<td>Z</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td>Z</td>
<td></td>
</tr>
</tbody>
</table>

PDP 1 Package

Absorbed Dose Rate (μGy/d)

- 3D/1 MTS-6
- 3D/1 MTS-7
- 3D/2 MTS-N
- 3D/2 MTS-6
- 3D/3 MTS-7
- 3D/4 MTS-6
- 3D/4 MTS-7
- 3D/5 MTS-6
- 3D/5 MTS-7

<table>
<thead>
<tr>
<th>Box 1</th>
<th>Box 2</th>
<th>Box 3</th>
<th>Box 4</th>
<th>Box 5</th>
<th>Box 6</th>
<th>Box 7</th>
<th>Box 8</th>
<th>Box 9</th>
<th>Box 10</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cone</td>
<td>varied</td>
<td></td>
</tr>
</tbody>
</table>
Results – Thermoluminescent Detectors

Dosimetric package

PDP 2: smaller differences of D in the successive phases

\[\sigma_D \text{ in average in the boxes: } MTS-6: \pm 15 \mu\text{Gy/d}; MTS-7: \pm 12 \mu\text{Gy/d} \]

PDP 1: twice as high deviation of D

\[\sigma_D \text{ in average in the boxes : } MTS-6: \pm 31 \mu\text{Gy/d}; MTS-7: \pm 27 \mu\text{Gy/d} \]
Latest Results – 3D/5 TLD & SSNTD combined

- Convolution of low LET (≤ 10 keV/μm) and high LET (≥ 10 keV/μm) portions of radiation using the TLD (MTS-7) and SSNTD results → total D, total H, average Q

Latest Results

<table>
<thead>
<tr>
<th>Box No.</th>
<th>Average Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.60</td>
</tr>
<tr>
<td>2</td>
<td>2.58</td>
</tr>
<tr>
<td>3</td>
<td>2.85</td>
</tr>
<tr>
<td>4</td>
<td>2.81</td>
</tr>
<tr>
<td>5</td>
<td>2.77</td>
</tr>
<tr>
<td>6</td>
<td>2.65</td>
</tr>
<tr>
<td>7</td>
<td>2.81</td>
</tr>
<tr>
<td>8</td>
<td>2.67</td>
</tr>
<tr>
<td>9</td>
<td>2.41</td>
</tr>
<tr>
<td>10</td>
<td>2.68</td>
</tr>
<tr>
<td>X (cone)</td>
<td>2.57</td>
</tr>
<tr>
<td>Y (ovhd)</td>
<td>2.56</td>
</tr>
<tr>
<td>Z (aft)</td>
<td>2.54</td>
</tr>
</tbody>
</table>

3D/5 (PDP 1)

- D full range
- D under 10 keV/μm

Conclusions

• *Space weather*: increasing solar activity between 2014 and 2015 decreasing neutron monitor signal (Oulu) \rightarrow decreasing number of high LET GCR particles

• *Changes in the altitude*
 - 3D/1 \rightarrow 2: + 10 km
 - 3D/3, 4, 5 \rightarrow ± 5 km

• The dosimetric values are influenced by the different shielding conditions of the boxes (*same tendency of dose rates at the locations* in all phases)

• The orientation of the 3D package was not constant \rightarrow difficult to correlate the observed results

• Dose rates were *tendentiously lower in the forward direction* than in the aft in most phases (presumably due to the shielding differences)

• Open question: 3D/3 – very few high LET particles (\rightarrow low D)?
Thank you for your attention!

Hungarian Academy of Sciences, Centre for Energy Research
Space Dosimetry Research Group
Passive Dosimetry Laboratory

Joe K. Pálfalvi
Eszter Tóth
Julianna Szabó
Júlia Kulcsár
Andrea Strádi