Neutron Spectrometry Using a 7Li Enriched CLYC Scintillation Detector

Alexander Luke Miller, Rachid Machrafi, Nafisah Khan

Faculty of Energy Systems and Nuclear Engineering,
University of Ontario Institute of Technology
Oshawa, Ontario, Canada

Workshops on Radiation Monitoring for the International Space Station

20th WRMISS, Cologne, Germany. September 8-10, 2015.
Outline

• Introduction
• Methodology
 – MCNP Simulation
 – Radiation Detection System
 – Experimental Investigation
• Results
• Discussion
• Conclusion
• Future Work
• Acknowledgements
Introduction

Neutron Detection - CLYC

Figure 1: ENDF/B-VII.1 $^{35}\text{Cl}(n,p)$ cross section

$^{35}\text{Cl}(n,p)$

Cs$_2$LiYCl$_6$:Ce Scintillator

Cross Section, b

Energy, MeV

Figure 1: ENDF/B-VII.1 $^{35}\text{Cl}(n,p)$ cross section
Introduction

\textbf{Cs}_2\text{LiYCl}_6:\text{Ce Scintillator}

\begin{align*}
\frac{1}{3}n + \frac{6}{3}\text{Li} & \rightarrow \frac{3}{1}\text{H} + \frac{4}{2}\text{He} \quad Q = 4.78 \text{ MeV} \\
\frac{1}{3}n + \frac{35}{17}\text{Cl} & \rightarrow \frac{35}{16}\text{S} + \frac{1}{1}\text{p} \quad Q = 0.615 \text{ MeV}
\end{align*}

Figure 2: CLYC spectra

\text{6Li reaction (n,\alpha) dominates so 99\% 7Li enriched CLYC is used}
Methodology

MCNP Simulation

- MCNPX radiation transport code
- 99% ^7Li enriched CLYC (materials and geometry)
- Pulse height spectra for mono-energetic neutron sources
- Tracked: n, alpha, proton, T, D, electrons and gamma

Source:
- Mono-energetic Neutrons
- Point source
- 10^9 source particles

Figure 3: MCNPX model of $\text{Cs}_2\text{LiYCl}_6$:$\text{Ce}$ detector for neutron simulations
Methodology

Radiation Detection System

The radiation Detector consists of:

- 99% 7Li enriched CLYC from RMD
- Hamamatsu R3998-02 PMT
- MCA (Bridgeport eMorpho)

Figure 4: Cs$_2$LiYCl$_6$:Ce scintillator
Methodology

Experimental Investigation

UOIT neutron generator

- **Mono energetic neutrons**
 - 2.5 MeV

Spectrum techniques rss-8 gamma button sources

![UOIT neutron source](image)

\[
\frac{2}{1}H + \frac{2}{1}H \rightarrow \frac{1}{0}n + \frac{3}{2}He
\]
Methodology

Experimental Investigation

KN Van De Graaff accelerator at McMaster University, Canada.
300 keV to 4 MeV neutrons

- Mono energetic neutrons
 - 2.67 MeV
 - 3.57 MeV
 - 4.0 MeV

\[
\frac{1}{1}p + \frac{7}{3}Li \rightarrow \frac{1}{0}n + \frac{7}{4}Be
\]

\[
\frac{2}{1}H + \frac{2}{1}H \rightarrow \frac{1}{0}n + \frac{3}{2}He
\]

Figure 6: McMaster LINAC
Results

Energy calibration and gamma response

Energy calibration

Gamma peak Resolution

Figure 7: a) CLYC energy calibration, b) CLYC resolution [1]
Results

2.5 MeV neutrons and ^{22}Na button source

Figure 8: 2.5 MeV neutrons a) MCNP, b) experiment
Results

2.5 MeV neutrons

\[\frac{1}{0}n + \frac{35}{17}Cl \rightarrow \frac{35}{16}S + \frac{1}{1}p \]

\[Q = 0.615 \text{ MeV} \]

Proton energy + 35S recoil energy = 2.5MeV + 0.615 MeV = 3.115 MeV

Proton Energy Spread = 2.809 MeV to 3.114 MeV

- Energy of the proton depends on angle of emission relative to the direction of the incident neutron

Proton Peak center at 2.96 MeV with a width of 10.3 %

- Only the proton contributes to scintillation in the detector so the peak appears centered at the average energy of the proton with a width representing the range of possible proton energies
Results

2.67, 3.57 and 4.0 MeV neutrons

Figure 9: spectra for neutrons a)2.67 MeV, b)3.57 MeV, c) 4 MeV
d) linear peak positions (MeeV) [2]
Discussion

Secondary Peaks

Figure 10: Excited state energy levels [3]

Nuclear energy levels of 36Cl, 35S, and 32P (Tuli et al.).
Discussion

MCNP Analysis

$E_n = 2.67$ MeV

$E_n = 3.57$ MeV

$E_n = 4.0$ MeV

Figure 11: MCNP Simulations for 2.67 MeV, 3.57 MeV and 4 MeV neutrons [2]

Counts per

Energy, MeV
Discussion

MCNP Comparison

Converted MeV to MeV using line from Figure 9 d) (proton scintillation efficiency)

Figure 12: MCNP and experiment for 2.67 MeV neutrons
Discussion

MCNP Comparison

Figure 13: MCNP and experiment for 3.57 MeV neutrons
Discussion

MCNP Comparison

4.0 MeV

Figure 14: MCNP and experiment for 4 MeV neutrons
Discussion

Proton Peak Resolution

Energy spread calculated from kinematics: angle of emitted proton relative to the direction of the incident neutron.

Figure 16: Proton peak resolution [2]
Discussion

MCNP Simulation

0.1 MeV to 5 MeV

Protons + alphas

Figure 15: MCNP neutrons (0.1 MeV – 5 MeV)
Due to excited states of ^{35}S and ^{32}P from $^{35}\text{Cl} (n,p)$ and (n,α) reactions.

Figure 17: Excited state cross sections [4]
Discussion

MCNP high energy neutrons

Figure 18: MCNP neutrons (0.1 MeV – 500 MeV)
Discussion - OTHER

Pulse Shape Discrimination (PSD)

Fig. 5. Overlay of electron, proton, and α-triton super-pulses. Proton and α-triton pulses are very similar. [5]
Discussion - OTHER

Pulse Shape Discrimination (PSD)

N. D’Olympia et al. / Nuclear Instruments and Methods in Physics Research A
714 (2013) 121–127

Fig. 3. PSD plot for 1.3 MeV fast neutron data. γ-ray, $^{35}\text{Cl}(n,p)$, and $^{6}\text{Li}(n,\alpha)$ events indicated. [5]
Discussion - OTHER

Other Experiments

University of Kentucky Accelerator Laboratory [6]

Figure 5.16: Left: Pulse-height spectra for 100-700 MeV neutrons within red PSD cut. Right: Spectra for neutrons within black PSD cut. Legend applies to both plots. [7]
Conclusion

• Used MCNP to investigate 7Li enriched CLYC detectors
 – Secondary peaks begin around 2 MeV and become dominant above 8 MeV
 – High energy neutrons produce many protons and alphas with widely varying energy

• Experimental Results
 – Clear proton peak is linear with increasing neutron energy (below 8 MeV)
 – Experiment fit MCNP results closely
Future Work

• Data acquisition system including PSD for neutron gamma separation

• Experiments with high energy neutrons and mixed neutron fields

• Solid State Photomultiplier (SSPM)

• Unfolding to determine incident neutron energy
References

References

