Charged Particle Measurements in Mars Orbit from 2002 to 2006

Cary Zeitlin, Lawrence Berkeley National Laboratory
Kerry T. Lee, Lockheed Martin Aerospace Co.
MRME & MRME

- MRME – The Mars Radiation Monitoring Experiment (follow-on to MARIE).
 - MARIE failed in Oct. 2003 SPE.
 - Repeated turn-on attempts have failed.
- Continuing measurements of energetic charged particles in Mars orbit using other Odyssey instruments.
 - GRS = Gamma Ray Spectrometer
 - Upper Level Discriminator is useful
 - HEND = High Energy Neutron Detector
 - Scintillation Block is useful
Odyssey Detectors With Sensitivity to Charged Particles

- **MARIE**: March 2002 – October 2003
- GRS ULD fires when ΔE in Ge crystal exceeds 10 MeV.
- HEND Inner Scint. is sensitive to neutrons from 300 keV up to about 10 MeV.
 - Most high-E neutrons created in spacecraft.
- Odyssey is in a 2-hour polar orbit about 400km up.
 - 5 p.m./5 a.m. local mean solar time.
 - Mars occupies 28% of 4π.
GRS and HEND Data

- Counts are collected every 19.7 sec.
- Relatively high rate in GRS ULD due to large geometry factor.
- Low count rate in HEND SB due to small geometry factor & low efficiency for conversion of incident charged particles to high-E neutrons.
2002 data used to determine average count rate for each detector during solar quiet time.
- This was close to solar max, GCR rates low.

Averages used to normalize all later data.
- MARIE & ULD data averaged in 10-minute intervals.
- SB data are 5-min. sums, averaged over 1-hour intervals due to lower statistics (still noisier than others).

Monthly plots of normalized data.
- With assumptions, convert counts to dose and dose equivalent monthly averages.
SPE Responses

- Typical: A1 most sensitive, followed by SB, followed by ULD.
- A2 not shown here...
SB matches A2 in this & several other SPE’s – but not all.
June 2002

- All 3 detectors show same trend but normalizations vary.
- HEND SB sees unexplained blip around day 155
July 2002

- MARI E coverage poor during big SPE.
- SB and A1 agree, at least for Day 198
- ULD below others despite adding back in rollovers → “Soft” spectrum SPE, proton threshold energy critical
- SB response < A1 when MARI E back on at Day 205
MARIE off for the most intense part of the event.

Interpolate MARIE data \rightarrow integral \sim agrees with ULD but not with SB.
Integration

- Time-integrated flux, dose, dose equivalent \Rightarrow sum up counts.
- With MARIE, large gaps a problem.
- Time-integrated flux and dose are approx. proportional to sums.
- Dose equivalent not as trivial, but not too hard (rely on model input).
Relative Flux, Dose, Dose Equivalent

- For flux J & dose D use 2002 quiet time factors.
- $D = J \times \text{constants} \times \text{avg. LET}$
 - LET = linear energy transfer in water, i.e., $\frac{dE}{dx}$
 - If avg. LET constant, D proportional to J
- Dose equivalent $H = D \times Q$
 - $Q = \text{average radiation quality factor}$
 - $Q = 1$ for protons (dominant in SPEs)
 - Model calculation: $Q = 5.38$ for GCR (time-dependent?).
- Recipe for H: GCR flux gets weight 5.38; SPE flux gets weight 1
 - Surprising result: modest SPE with Forbush decrease can cause net reduction in H.
- Final MARIE numbers will allow simple scaling to physical units.
Detector Responses

- GCR response of GRS is straightforward, HEND not.
- SPE responses complicated.
 - ULD always less sensitive than MARIE A1 or A2 – higher threshold energy.
 - SB varies, from most sensitive to least.
 - Caused by varying SPE proton energy spectra
 - Need model of SB response as a function of SPE spectrum.
2003 Relative Flux

For GCR, SB trends low starting in August.
2003 Relative Dose Equivalent

Log scale

Linear scale w/ cutoff.

Relative Dose Equivalent
Long Timeline Stripchart

- HEND SB (green) and ULD (red) only
- Log scale
Long Timeline GCR

- Zoom in around 1.0, see modulation
- Both mostly follow similar trends with a few unexplained differences (e.g., times near days 600, 1200)
More Detail – 2004 & 2005

2004
GRS ULD
HEND SB

coincidence mode

2005
GRS ULD
HEND SB

Day of Year
Cataloging SPE (Tricky)
<table>
<thead>
<tr>
<th>MM/YY</th>
<th>DOY</th>
<th>A1 peak</th>
<th>ULD peak</th>
<th>SB peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>04/02</td>
<td>115</td>
<td>3.5</td>
<td>1.2</td>
<td>1.5</td>
</tr>
<tr>
<td>04/02</td>
<td>147</td>
<td>1.55</td>
<td>1.1</td>
<td>1.25</td>
</tr>
<tr>
<td>07/02</td>
<td>198</td>
<td>350</td>
<td>50</td>
<td>350</td>
</tr>
<tr>
<td>07/02</td>
<td>200</td>
<td></td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>07/02</td>
<td>201</td>
<td></td>
<td>70</td>
<td>600</td>
</tr>
<tr>
<td>08/02</td>
<td>229</td>
<td></td>
<td>1.2</td>
<td>1.8</td>
</tr>
<tr>
<td>08/02</td>
<td>238</td>
<td>1.15</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>09/02</td>
<td>250</td>
<td>1.3</td>
<td>1.0</td>
<td>1.1</td>
</tr>
<tr>
<td>10/02</td>
<td>288</td>
<td>14</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>10/02</td>
<td>299</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>10/02</td>
<td>302</td>
<td>240</td>
<td>40</td>
<td>250</td>
</tr>
<tr>
<td>03/03</td>
<td>78</td>
<td>6</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>10/03</td>
<td>300</td>
<td>50</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>10/03</td>
<td>302</td>
<td></td>
<td>75</td>
<td>10000</td>
</tr>
</tbody>
</table>
SPE’s Seen by ODY post-MARIE

<table>
<thead>
<tr>
<th>MM/YY</th>
<th>DOY</th>
<th>ULD peak*</th>
<th>SB peak*</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/03</td>
<td>337</td>
<td>1.2</td>
<td>2.4</td>
</tr>
<tr>
<td>07/04</td>
<td>190</td>
<td>2.4</td>
<td>2.2</td>
</tr>
<tr>
<td>09/04</td>
<td>227</td>
<td>1.8</td>
<td>3.3</td>
</tr>
<tr>
<td>11/04</td>
<td>319</td>
<td>2.4</td>
<td>3.8</td>
</tr>
<tr>
<td>01/05</td>
<td>22</td>
<td>5.5</td>
<td>9.3</td>
</tr>
<tr>
<td>02/05</td>
<td>33</td>
<td>6.8</td>
<td>5.5</td>
</tr>
<tr>
<td>06/05</td>
<td>169</td>
<td>1.3</td>
<td>1.2</td>
</tr>
<tr>
<td>07/05</td>
<td>196</td>
<td>2.7</td>
<td>7.5</td>
</tr>
<tr>
<td>07/05</td>
<td>199</td>
<td>1.8</td>
<td>2.3</td>
</tr>
<tr>
<td>07/05</td>
<td>203</td>
<td>1.2</td>
<td>1.5</td>
</tr>
<tr>
<td>07/05</td>
<td>206</td>
<td>4.7</td>
<td>2.8</td>
</tr>
<tr>
<td>08/05</td>
<td>236</td>
<td>1.2</td>
<td>2.0</td>
</tr>
<tr>
<td>08/05</td>
<td>237</td>
<td>1.3</td>
<td>2.3</td>
</tr>
<tr>
<td>08/05</td>
<td>242</td>
<td>1.5</td>
<td>1.4</td>
</tr>
<tr>
<td>09/05</td>
<td>253</td>
<td>13.3</td>
<td>18.5</td>
</tr>
</tbody>
</table>

* Peaks are relative to quiet-time avg. in days near SPE
Summary

- Lots of data in simple, standard form.
- Soon to be placed online for public availability (Planetary Data System = PDS).
- MARIE simulation will give final normalization constants, then normalize the rest.
- Data for HEND SB hard to understand without detailed response model.
 - Project soon to get underway using FLUKA and spacecraft model created for MARIE.