To the neutron contribution to the exposure level onboard International Space Station

Spurný František¹), Ploc Ondřej ᵃ,²), Dačev Cvetan ³)

¹) Dept. of Radiation Dosimetry, Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Prague, Czech Republic;
²) Dept. of Dosimetry and Application of Ionizing Radiation, Czech Technical University, Prague, Czech Republic
³) Solar-Terrestrial Influence Laboratory, Bulgarian Academy of Sciences, Sofia

WRMISS11, Oxford, September 6-8, 2006
Table of content

• Introduction

• Materials and methods
  ✓ MDU - Liulin energy deposition spectrometer, calibration and aircraftboard interpretation procedures
  ✓ Spacecraft and aircraft flight conditions

• Results
  ✓ Energy deposition spectra comparison
  ✓ Spacecraft board interpretation procedure
  ✓ Contribution of neutrons to the exposure level

• Discussion

• Conclusions
Introduction

• Neutron contribution to the spacecraft crew exposure could represent up to several tens % of the total value of the dose equivalent. The determination of this contribution represents rather complex and difficult task, both through experimental as theoretical estimation.

• The contribution will present an attempt to appreciate the neutron contribution onboard International Space Station and Foton capsule using the data measured by means of a Si-diode based energy deposition spectrometer, and on their comparison with on-Earth and onboard aircraft measured data.
**MOBIL DOSIMETRY UNITS (MDU)**

**External view of MDU**

**Internal view of MDU**

**SPECIFICATIONS OF MDU**

- Dose range: 0.093 – 1.56 mGy;
- Flux range: 0.01 - 1250 part/cm2s;
- Energy loss range: 0.0407 – 20.83 MeV;
- Pulse height range: 19.5 mV – 5.0 V;
- LET (Si) range: 0.27 – 69.4 keV/μm;
- Temperature range: 0°C – +40°C;
- Power consumption: typically 52 mW;
- Size 100x100x50 mm;
- Total mass (including 2x 0.1 kg SAFT LSH20 3.6 V Li-ion batteries): 0.33 kg.

- **Operation time 110 days**

**WRMISS11, Oxford, September 6-8, 2006**
MDU – onboard aircraft interpretation procedure

1) Dose in Si calculated as:
\[ D = K \times \sum (E_i \times A_i) \times MD \]
where
\( MD \) – mass of the detector;
\( E_i \) – energy loss in the channel \( i \);
\( A_i \) – events number in the channel \( i \);
\( K \) – coefficient based on \( W_e \) in Si

2) Based on the difference in spectra:
- \( D(Si) \) above \( \sim 1 \) MeV (\( D_{\text{high}} \)) - neutron (–like) component
- \( D(Si) \) below \( \sim 1 \) MeV - (\( D_{\text{low}} \)) non-neutron component
- \( D_{\text{low}} \) and \( D_{\text{high}} \) – multiplied by a coefficient to get \( H^*(10)_{\text{high}} \)

Coefficients – established in CERF fields and/or on the base of comparison with TEPC results
EXAMPLES OF RESULTS—comparison of MDU measured and calculated values
Spacecraft and aircraft flight conditions

- **International Space Station** — May 2001, inclination 51.6°, altitudes between 360 and 420 km; shield about 20 g.cm\(^{-2}\), total D(Si) \(\approx 6 \text{ mGy}\)

- **Foton M2 capsule** — May 2005, inclination 62.6°, altitudes between 260 and 304 km; shield \(\approx 2 \text{ g.cm}^{-2}\), total D(Si) \(\approx 0.6 \text{ mGy}\)

- **Aircraft – A310-300** — since 22/03/01, 12 two month’s runs, more than 1100 flights, mostly over the North Atlantic, about 5000 hours at flight altitude, total D(Si) \(\approx 9.3 \text{ mGy}\); > 40000 spectra
Onboard aircraft long term monitoring
CSA flights 30/05-25/07/01
Comparison of energy deposition spectra - 2

Energy deposition spectra

- Foton GCR
- Foton SAA
- Aircraft 2005

WRMISS11, Oxford, September 6-8, 2006
Comparison of energy deposition spectra - 3

Relative contribution (RC) to $E_{\text{dep}}$

$E_{\text{dep}}^*RC(E_{\text{dep}})$

aircraft
ISSGCR
ISSSAA

WRMISS11, Oxford, September 6-8, 2006
1. Supposed that:

- $E_{\text{dep}}$ bellow $\sim 1$ MeV – low LET component

- $E_{\text{dep}}$ above $\sim 1$ MeV composed of:
  - neutron component, with similar spectra as onboard aircraft, and
  - contribution of HECP of GCR
Comparison of CERF, aircraft, and spacecraft calculated spectra
Comparison of CERF and at 35kfeet calculated spectra

Calculated Neutron Spectra

- CERF Concrete shield top position 6
- Heinrich 35,000 ft

$h^* \Phi_E / \text{mSv}$

$E / \text{eV}$

WRMISS11, Oxford, September 6-8, 2006
Further comparison of neutron spectra

WRMISS11, Oxford, September 6-8, 2006
Spacecraft-board interpretation procedure

GCR - 2

2. Interpreted as:
   • Low LET component: $D(\text{Si}) \rightarrow D(\text{tissue}) \rightarrow \text{”H*(10)”};$
   • Neutron component: as onboard aircraft;
   • GCR component: $D(\text{Si}) \rightarrow D(\text{tissue}) \times 5 = \text{“H*(10)”};$

3. To get as good statistical reliability as possible
   for energy deposition spectra above $\sim 1$ MeV – all aircraft spectra summed up and regressed
Regressed aircraft energy distribution spectrum—comparison with spacecrafts

Energy deposition spectra

\[ y = 0.0105x^{-1.4294} \]

\[ R^2 = 0.9851 \]

Relative energy deposition distributions

- Aircraft
- FOTON
- ISS

Power function (aircraft)

WRMISS11, Oxford, September 6-8, 2006
Spacecraft-board interpretation procedure
SAA

- Supposed that all events are due to protons of SAA

- Interpretation:
  \[ D(\text{Si}) \rightarrow D(\text{tissue}), \text{ and } D(\text{tissue}) \times QF_{\text{average}} \text{ calculated from energy distribution spectra (\sim 1.3) = } "H^*(10)"; \]
### Daily values of dose quantities onboard space vehicles

#### Partial values

<table>
<thead>
<tr>
<th>H*(10), µSv for component</th>
<th>ISS</th>
<th>SAA</th>
<th>Foton</th>
<th>capsule</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GCR</td>
<td>SAA</td>
<td>GCR</td>
<td>SAA</td>
</tr>
<tr>
<td>low LET</td>
<td>99</td>
<td>239</td>
<td>40</td>
<td>161</td>
</tr>
<tr>
<td>neutrons</td>
<td>126</td>
<td></td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>HECP</td>
<td>89</td>
<td>69</td>
<td>22</td>
<td>47</td>
</tr>
<tr>
<td>Sum up</td>
<td>314</td>
<td>308</td>
<td>108</td>
<td>208</td>
</tr>
<tr>
<td>Neutrons, %</td>
<td>40</td>
<td></td>
<td></td>
<td>42</td>
</tr>
</tbody>
</table>

#### Total values

<table>
<thead>
<tr>
<th>Vehicle</th>
<th>ISS 01-MDU</th>
<th>ISS01-TLD+TED</th>
<th>Foton</th>
</tr>
</thead>
<tbody>
<tr>
<td>D(Si), µGy</td>
<td>237</td>
<td>-</td>
<td>86.7</td>
</tr>
<tr>
<td>H*(10)_{high}, µSv</td>
<td>284</td>
<td>316</td>
<td>115</td>
</tr>
<tr>
<td>H*(10)_{tot}, µSv</td>
<td>622</td>
<td>518</td>
<td>316</td>
</tr>
<tr>
<td>Neutrons, %</td>
<td>20.5</td>
<td>27</td>
<td>14.5</td>
</tr>
</tbody>
</table>
DISCUSSION

1. Results obtained are comparable to those estimated by other methods

2. First attempt – hypothesis adopted have to be analyzed still more in detail

3. Uncertainties – estimated relatively (1s) probably not better than:
   • $\pm 15\%$ for GCR component;
   • $\pm 20\%$ for SAA component;
CONCLUSIONS

1. Analysis of energy deposition spectra registered by MDU-Liulin onboard spacecraft comparatively to these onboard aircraft gives hope to offer another possibility to estimate neutron contribution to the exposure level in space.

2. Further studies are necessary to estimate the reliability of such approach more quantitatively, particularly:
   - To accumulate and analyze further experimental results during varying onboard spacecraft exposure conditions; and
   - To compare the results from experimental studies with those obtained by calculation.
Acknowledgements

• We are much obliged to our colleagues from Czech Airlines, particularly to B. Kolář, P. Breburda, and J. Starý for their help in realisation of long-term monitoring runs, and for the submission of navigation data. We thank also to B. Tomov, Y. Matviichuk, and P. Dimitrov for their help in preparation and checking of MDU units.

• Studies were partially supported through the grant No. 202/04/0795 of the GA CR and the IRP AV0Z10480505.
Thank you for your attention!